Tensors (张量)创建
几何代数中定义的张量是基于向量和矩阵的推广,我们可以将标量视为零阶张量,矢量视为一阶张量,那么矩阵就是二阶张量。在PyTorch中,张量Tensor是最基础的运算单位,与NumPy中的NDArray类似,张量表示的是一个多维矩阵。不同的是,PyTorch中的Tensor可以运行在GPU上,而NumPy的NDArray只能运行在CPU上。由于Tensor能在GPU上运行,因此大大加快了运算速度。
from __future__ import print_function
import torch
构造一个5x3矩阵,不初始化。
x = torch.empty(5, 3)
print(x)
输出:
tensor(1.00000e-04 *
[[-0.0000, 0.0000, 1.5135],
[ 0.0000, 0.0000, 0.0000],
[ 0.0000, 0.0000, 0.0000],
[ 0.0000, 0.0000, 0.0000],
[ 0.0000, 0.0000, 0.0000]])
构造一个随机初始化的矩阵:
x = torch.rand(5, 3)
print(x)
输出:
tensor([[ 0.6291, 0.2581, 0.6414],
[ 0.9739, 0.8243, 0.2276],
[ 0.4184, 0.1815, 0.5131],
[ 0.5533, 0.5440, 0.0718],
[ 0.2908, 0.1850, 0.5297]])
构造一个矩阵全为 0,而且数据类型是 long.
x = torch.zeros(5, 3, dtype=torch.long)
print(x)
输出:
tensor([[ 0, 0, 0],
[ 0, 0, 0],
[ 0, 0, 0],
[ 0, 0, 0],
[ 0, 0, 0]])
构造一个张量,直接使用数据:
x = torch.tensor([5.5, 3])
print(x)输出:
tensor([ 5.5000, 3.0000])创建一个 tensor 基于已经存在的 tensor。
x = x.new_ones(5, 3, dtype=torch.double)
# new_* methods take in sizes
print(x)
x = torch.randn_like(x, dtype=torch.float)
# override dtype!
print(x)
# result has the same size
输出:
tensor([[ 1., 1., 1.],
[ 1., 1., 1.],
[ 1., 1., 1.],
[ 1., 1., 1.],
[ 1., 1., 1.]], dtype=torch.float64)
tensor([[-0.2183, 0.4477, -0.4053],
[ 1.7353, -0.0048, 1.2177],
[-1.1111, 1.0878, 0.9722],
[-0.7771, -0.2174, 0.0412],
[-2.1750, 1.3609, -0.3322]])获取它的维度信息:
print(x.size())输出:
torch.Size([5, 3])注意
torch.Size 是一个元组,所以它支持左右的元组操作。
NumPy数组与Tensors
张量可以由GPU(或TPU)支持。
张量是不可变的。
NumPy兼容性: 在TensorFlow tf.Tensors和NumPy ndarray之间转换很容易。
Tensor可以保持在GPU显存中,而NumPy阵列总是由主机内存支持,并且转换涉及从GPU到主机内存的复制。
Tensor与Numpy的转化
张量和Numpy array数组在CPU上可以共用一块内存区域, 改变其中一个另一个也会随之改变。
1. 由张量变换为Numpy array数组
t = torch.ones(5)
print(f"t: {t}")
n = t.numpy()
print(f"n: {n}")显示:
t: tensor([1., 1., 1., 1., 1.])
n: [1. 1. 1. 1. 1.]修改张量的值,则Numpy array数组值也会随之改变。
t.add_(1)
print(f"t: {t}")
print(f"n: {n}")显示:
t: tensor([2., 2., 2., 2., 2.])
n: [2. 2. 2. 2. 2.]2. 由Numpy array数组转为张量
n = np.ones(5)
t = torch.from_numpy(n)修改Numpy array数组的值,则张量值也会随之改变。
np.add(n, 1, out=n)
print(f"t: {t}")
print(f"n: {n}")显示:
t: tensor([2., 2., 2., 2., 2.], dtype=torch.float64)
n: [2. 2. 2. 2. 2.]张量的运算
有超过100种张量相关的运算操作, 例如转置、索引、切片、数学运算、线性代数、随机采样等。更多的运算可以在这里查看。
所有这些运算都可以在GPU上运行(相对于CPU来说可以达到更高的运算速度)。如果你使用的是Google的Colab环境, 可以通过 Edit > Notebook Settings 来分配一个GPU使用。
# 判断当前环境GPU是否可用, 然后将tensor导入GPU内运行
if torch.cuda.is_available():
tensor = tensor.to('cuda')1. 张量的索引和切片
tensor = torch.ones(4, 4)
tensor[:,1] = 0 # 将第1列(从0开始)的数据全部赋值为0
print(tensor)显示:
tensor([[1., 0., 1., 1.],
[1., 0., 1., 1.],
[1., 0., 1., 1.],
[1., 0., 1., 1.]])2. 张量的拼接
你可以通过torch.cat方法将一组张量按照指定的维度进行拼接, 也可以参考torch.stack方法。这个方法也可以实现拼接操作, 但和torch.cat稍微有点不同。
t1 = torch.cat([tensor, tensor, tensor], dim=1)
print(t1)显示:
tensor([[1., 0., 1., 1., 1., 0., 1., 1., 1., 0., 1., 1.],
[1., 0., 1., 1., 1., 0., 1., 1., 1., 0., 1., 1.],
[1., 0., 1., 1., 1., 0., 1., 1., 1., 0., 1., 1.],
[1., 0., 1., 1., 1., 0., 1., 1., 1., 0., 1., 1.]])3. 张量的乘积和矩阵乘法
# 逐个元素相乘结果
print(f"tensor.mul(tensor): \n {tensor.mul(tensor)} \n")
# 等价写法:
print(f"tensor * tensor: \n {tensor * tensor}")显示:
tensor.mul(tensor):
tensor([[1., 0., 1., 1.],
[1., 0., 1., 1.],
[1., 0., 1., 1.],
[1., 0., 1., 1.]])
tensor * tensor:
tensor([[1., 0., 1., 1.],
[1., 0., 1., 1.],
[1., 0., 1., 1.],
[1., 0., 1., 1.]])下面写法表示张量与张量的矩阵乘法:
print(f"tensor.matmul(tensor.T): \n {tensor.matmul(tensor.T)} \n")
# 等价写法:
print(f"tensor @ tensor.T: \n {tensor @ tensor.T}")显示:
tensor.matmul(tensor.T):
tensor([[3., 3., 3., 3.],
[3., 3., 3., 3.],
[3., 3., 3., 3.],
[3., 3., 3., 3.]])
tensor @ tensor.T:
tensor([[3., 3., 3., 3.],
[3., 3., 3., 3.],
[3., 3., 3., 3.],
[3., 3., 3., 3.]])4. 自动赋值运算
自动赋值运算通常在方法后有 _ 作为后缀, 例如: x.copy_(y), x.t_()操作会改变 x 的取值。
print(tensor, "\n")
tensor.add_(5)
print(tensor)显示:
tensor([[1., 0., 1., 1.],
[1., 0., 1., 1.],
[1., 0., 1., 1.],
[1., 0., 1., 1.]])
tensor([[6., 5., 6., 6.],
[6., 5., 6., 6.],
[6., 5., 6., 6.],
[6., 5., 6., 6.]])注意:
自动赋值运算虽然可以节省内存, 但在求导时会因为丢失了中间过程而导致一些问题, 所以我们并不鼓励使用它。
5. 张量加法
加法: 方式 1
y = torch.rand(5, 3)
print(x + y)Out:
tensor([[-0.1859, 1.3970, 0.5236],
[ 2.3854, 0.0707, 2.1970],
[-0.3587, 1.2359, 1.8951],
[-0.1189, -0.1376, 0.4647],
[-1.8968, 2.0164, 0.1092]])加法: 方式2
print(torch.add(x, y))Out:
tensor([[-0.1859, 1.3970, 0.5236],
[ 2.3854, 0.0707, 2.1970],
[-0.3587, 1.2359, 1.8951],
[-0.1189, -0.1376, 0.4647],
[-1.8968, 2.0164, 0.1092]])加法: 提供一个输出 tensor 作为参数
result = torch.empty(5, 3)
torch.add(x, y, out=result)
print(result)Out:
tensor([[-0.1859, 1.3970, 0.5236],
[ 2.3854, 0.0707, 2.1970],
[-0.3587, 1.2359, 1.8951],
[-0.1189, -0.1376, 0.4647],
[-1.8968, 2.0164, 0.1092]])加法: in-place
# adds x to y
y.add_(x)
print(y)Out:
tensor([[-0.1859, 1.3970, 0.5236],
[ 2.3854, 0.0707, 2.1970],
[-0.3587, 1.2359, 1.8951],
[-0.1189, -0.1376, 0.4647],
[-1.8968, 2.0164, 0.1092]])Note
注意 任何使张量会发生变化的操作都有一个前缀 '_'。例如:x.copy_(y), x.t_(), 将会改变 x.
你可以使用标准的 NumPy 类似的索引操作
print(x[:, 1])Out:
tensor([ 0.4477, -0.0048, 1.0878, -0.2174, 1.3609])改变大小:如果你想改变一个 tensor 的大小或者形状,你可以使用 torch.view:
x = torch.randn(4, 4)
y = x.view(16)
z = x.view(-1, 8) # the size -1 is inferred from other dimensions
print(x.size(), y.size(), z.size())Out:
torch.Size([4, 4]) torch.Size([16]) torch.Size([2, 8])如果你有一个元素 tensor ,使用 .item() 来获得这个 value 。
x = torch.randn(1)
print(x)
print(x.item())Out:
tensor([ 0.9422])
0.9422121644020081
评论列表(0条)