-
线性代数与微积分总览
掌握入门级代数知识。 了解变量和系数、线性方程式、函数图和直方图(熟悉对数和导数等更高级的数学概念会有帮助,但不是必需条件)。熟练掌握编程基础知识,并且具有一些使用 Python 进行编码的经验。 应该能够熟练阅读和编写包含基础编程结构(例如,函数定义/调用、列表和字典、循环和条件表达式)的 Python 代码。
-
高等数学基础知识
高等数学一(一元极限、连续、导数和微分及其应用),高等数学二(不定积分、定积分及其应用和常微分方程),高等数学三(空间解析几何、多元函数微分学),高等数学四(重积分、曲线曲面积分、级数)四个部分。
-
线性代数基础知识
线性代数是数学的一个分支,它的研究对象是向量,向量空间(或称线性空间),线性变换和有限维的线性方程组。向量空间是现代数学的一个重要课题;因而,线性代数被广泛地应用于抽象代数和泛函分析中;通过解析几何,线性代数得以被具体表示。线性代数的理论已被泛化为算子理论。由于科学研究中的非线性模型通常可以被近似为线性模型,使得线性代数被广泛地应用于自然科学和社会科学中。
-
概率论基础知识
概率论是研究随机现象数量规律的数学分支。随机现象是相对于决定性现象而言的。在一定条件下必然发生某一结果的现象称为决定性现象。随机现象则是指在基本条件不变的情况下,每一次试验或观察前,不能肯定会出现哪种结果,呈现出偶然性。
-
数理统计基础知识
数理统计是数学的一个分支,分为描述统计和推断统计。它以概率论为基础,研究大量随机现象的统计规律性。描述统计的任务是搜集资料,进行整理、分组,编制次数分配表,绘制次数分配曲线,计算各种特征指标,以描述资料分布的集中趋势、离中趋势和次数分布的偏斜度等。推断统计是在描述统计的基础上,根据样本资料归纳出的规律性,对总体进行推断和预测。
线性代数与微积分基础
线性代数是数学的一个分支,它的研究对象是向量,向量空间(或称线性空间),线性变换和有限维的线性方程组。微积分(Calculus)是高等数学中研究函数的微分(Differentiation)、积分(Integration)以及有关概念和应用的数学分支。它是数学的一个基础学科。内容主要包括极限、微分学、积分学及其应用。
